Extensions 1→N→G→Q→1 with N=C2 and Q=C42.30C22

Direct product G=N×Q with N=C2 and Q=C42.30C22
dρLabelID
C2×C42.30C22128C2xC4^2.30C2^2128,1866


Non-split extensions G=N.Q with N=C2 and Q=C42.30C22
extensionφ:Q→Aut NdρLabelID
C2.1(C42.30C22) = C42.24Q8central extension (φ=1)128C2.1(C4^2.30C2^2)128,568
C2.2(C42.30C22) = C2.(C8⋊D4)central extension (φ=1)128C2.2(C4^2.30C2^2)128,667
C2.3(C42.30C22) = C42.111D4central extension (φ=1)128C2.3(C4^2.30C2^2)128,692
C2.4(C42.30C22) = C42.124D4central extension (φ=1)128C2.4(C4^2.30C2^2)128,724
C2.5(C42.30C22) = C4⋊C4.85D4central stem extension (φ=1)128C2.5(C4^2.30C2^2)128,758
C2.6(C42.30C22) = C4⋊C4.95D4central stem extension (φ=1)128C2.6(C4^2.30C2^2)128,775
C2.7(C42.30C22) = (C2×Q8).109D4central stem extension (φ=1)128C2.7(C4^2.30C2^2)128,806
C2.8(C42.30C22) = (C2×C4).28D8central stem extension (φ=1)128C2.8(C4^2.30C2^2)128,831

׿
×
𝔽